Search results for "B-cell malignancies"
showing 3 items of 3 documents
IL‐10‐producing B cells are characterized by a specific methylation signature
2019
Among the family of regulatory B cells, the subset able to produce interleukin-10 (IL-10) is the most studied, yet its biology is still a matter of investigation. The DNA methylation profiling of the il-10 gene locus revealed a novel epigenetic signature characterizing murine B cells ready to respond through IL-10 synthesis: a demethylated region located 4.5 kb from the transcription starting site (TSS), that we named early IL10 regulatory region (eIL10rr). This feature allows to distinguish B cells that are immediately prone and developmentally committed to IL-10 production from those that require a persistent stimulation to exert an IL-10-mediated regulatory function. These late IL-10 pro…
An update on the xenograft and mouse models suitable for investigating new therapeutic compounds for the treatment of B-cell malignancies
2008
B-cell malignancies account for over the 90% of all lymphoid neoplasms. The clonal proliferations of B-cells show a high degree of variation in terms of clinical and presenting features, histopathology, immuophenotype, and genetics. Primary tumor samples are useful for examining the characteristics of a patients own tumor, although both primary leukemic cells and cell lines provide an initial step for screening novel compounds for their activity in some hematological malignancies, they should be followed by models in intact animals. In this review, we try to summarize the animal models generated to study B-cell malignancies, in particular, B-cell lymphoma, B-cell CLL and MM that represent t…
New Potential Therapeutic Approach for the Treatment of B-Cell Malignancies Using Chlorambucil/Hydroxychloroquine-Loaded Anti-CD20 Nanoparticles
2013
Current B-cell disorder treatments take advantage of dose-intensive chemotherapy regimens and immunotherapy via use of monoclonal antibodies. Unfortunately, they may lead to insufficient tumor distribution of therapeutic agents, and often cause adverse effects on patients. In this contribution, we propose a novel therapeutic approach in which relatively high doses of Hydroxychloroquine and Chlorambucil were loaded into biodegradable nanoparticles coated with an anti-CD20 antibody. We demonstrate their ability to effectively target and internalize in tumor B-cells. Moreover, these nanoparticles were able to kill not only p53 mutated/deleted lymphoma cell lines expressing a low amount of CD20…